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Abstract In this chapterwepresent someoriginal experimental results of the process
of focusing of surface waves in a fluid. To this end, monochromatic waves of fre-
quencies in the range 5–15Hz are produced in a water layer of 10cm depth using
a parabolic wave maker. Experiments remain in the deep water approximation and
both gravity and surface tension influence the evolution of waves. We find that, as in
optics, the wave field exhibits phenomena such as diffraction, interference and the
presence of two caustics intersecting at one point and forming a cusp. To investigate
the properties of surface waves, the synthetic Schlieren method is used. Nonlinear
behavior emerges during the process of focusing even for small amplitude waves.
For example the peak amplitudes are more pronounced that the amplitude of the
troughs. Some non expected results emerge from our experiments. The first is that
the position of the maximum amplitude of the wave is dependent on the amplitude
of the initial parabolic wave front, but in any case, is always in the vicinity of the
origin of Huygens’ cusp. Second, the predictions for linear waves are only in partial
agreement with our experimental data. And finally, due to the fact that the ratio of
the size of wave maker to the wavelength does not tend to infinity some finite size
effects are observed.
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1 Introduction

In the theory of waves, the caustics are surfaces that separate illuminated regions
from shaded regions. Geometrical optics establishes that in the illuminated region
several rays reach each point, while in the shaded region no rays are present. The
same theory predicts that the amplitude of the wave goes to infinity along the caustic.
In reality this behavior does not hold, because the ray theory is only an approximation
coming from geometrical optics forgetting about the wave properties. However, the
behavior of a wave in the vicinity of a caustic has been investigated in the past (Paris
and Kaminski 2001; Lewis et al. 1967; Stamnes and Spjelkavik 1983) for two rays
superimposition. In this case, the wave field can be described in terms of the Airy
function Ai(x). This function has an oscillating behavior for x < 0, while for x > 0
the amplitude has an exponential smooth behavior. In fact, the problem we present
in this manuscript cannot be described only in terms of Airy function because inside
the cusp the wave field is the result of the superposition of three rays. The method
proposed by Pearcey (1946) must be used in this case instead of the classical theory.
In surface waves, a field with a Huygens’ cusp can be produced with a parabolic
wave maker (Pomeau (1991), see Fig. 1). The initial wavefront is described by the
equation

y0 = ax20 (1)

A ray starting at the parabola of equation y0 = ax20 moves in a direction perpen-
dicular to it, i. e. in a direction given by the normal vector n̂ in the point: (x0, y0):

n̂ = (−2ax0, 1)√
1 + 4a2x20

(2)

As the wave travels, its amplitude grows by focusing according to the following
relation:

A = A0

√
ρ

ρ − d
(3)

where A0 is the initial amplitude, d is the distance traveled by the ray and ρ = 1
K

is the inverse of the curvature of the parabola at the starting point, which in actual
case is:

K = y′′
0

(1 + y′2
0 )3/2

= 2a

(1 + 4a2x20 )
3/2

(4)
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Fig. 1 Parabolic wave maker
(red line). The equation of the
curve is y0 = ax20 . According
to geometrical optics a ray
starts at the parabola and
moves in a direction normal to
the curve (blue lines). In the
figure, the Huygens’ cusp is
plotted as the black line. The
arrow in the figure indicates
the direction of propagation of
waves
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The space where the wave progresses is divided in two regions. In the first one, which
is in contact with the parabolic wave maker, only one ray passes through each point.
Far away a second region emerges; it is characterized by the fact that three rays reach
each point. The curve separating both regions is the union of two caustics. One way
to obtain the analytical expression of the caustics is to determine the limit of the
region where only one real root exists for x0 in the equation of a ray in parametric
form (x, y) = (x0, y0)+ n̂d . An alternative method is to use the property that in the
ray theory a caustic is the locus where the amplitude becomes infinite. This happens
for d = ρ (Eq. 3). That is:

(x, y) = (x0, ax20 ) + n̂ρ = (−4a2x30 ,
1

2a
+ 3ax20 ) (5)

The analytical expression for caustics can be obtained if we combine both compo-
nents of this vector equation and eliminate x0. This procedure leads to the following
equation

x = ±4
√

a

3
√
3
(y − 1

2a
)3/2 (6)

The last equation has a cusp singularity at (0, 1
2a ) where both caustics intersect. Far

from this point, the characteristics of the wave can be deduced using the method of
the stationary phase. Near the cusp, the amplitude h(x, y) of the surface wave can
be calculated by the diffraction integral (Pearcey 1946; Paris and Kaminski 2001),
which is an approximate solution of the wave equation:
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h(x, y) =
∫ +∞

−∞
dx0

cos(θ(x0))

exp(ikd(x0, x, y))√
d(x0, x, y)

(7)

where θ(x0) is the angle between the tangent to parabola at point (x0, y0) and the x
axis. We assume that cos(θ(x0)) ≈ 1. Interest is pointed out in the solution around
the singular point (0, 1

2a ). For this purposewemade a Taylor expansion of d(x0, x, y)

about this point. At first order we obtain:

d(x0, x, y) ≈ R + 1

2R

(
a2x40 + 2a

(
1

2a
− y

)
x20 − 2xx0

)
(8)

where R = 1
2a . This expression is used only in the exponential term because

kd(x0, x, y) is a rapidly varying variable and in the denominator we made the
approximation that d(x0, x, y) ≈ R. The diffraction integral is then approximated
by:

h(x, y) = exp(ik R)√
R

∫ +∞

−∞
exp

(
ik

2R

[
a2x40 + 2a(

1

2a
− y)x20 − 2xx0

])
dx0 (9)

Let us make the following change of variable x0 =
(

2R
ka2

)1/4
t and define two quan-

tities U = 2
( k
2R

)1/2
( 1
2a − y) and V = − 2√

a

( k
2R

)3/4
x .

Then we recover the Pearcey integral (Pearcey 1946; Berry 1992) for a linear
wave in the vicinity of a cusp:

h(x, y) = k

i2π

exp(ik R)√
R

(
2R

ka2

)1/4 ∫ +∞

−∞
exp

(
i
[
t4 + Ut2 + V t

])
dt (10)

In the precedent equation the integral extends from −∞ to +∞. However, even if
in a surface wave field λ is usually smaller than the length R , the ratio R

λ
does not

go to infinity as in the case for light and the integral in Eq.10 must be calculated
for a finite interval. In Fig. 2 we show the envelope of the amplitude along the axis
of symmetry x = 0 for a wave of frequency ν = 10Hz (black line). We assume that
the surface is excited with a parabolic wave maker whose parameter a is 0.02 cm−1

and that extends in the interval −15cm < x0 < 15cm. The curve is obtained from
Eq. 10, but the integration is performed over a finite interval. For comparison we
have also included the curve when the integration is made in an infinite domain
−∞ < t < ∞ (blue line), the envelope calculated from a numerical solution of
the wave equation (magenta line) (Ruiz-Chavarria et al. (2011)) and the asymptotic
behavior resulting from the method of stationary phase (dashed red line). In all cases
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Fig. 2 Envelope of the wave amplitude along the axis of symmetry (black line) according to
the diffraction integral calculated on a finite interval. h0 is the amplitude at the wave maker. For
comparison we also plot the curve when the integral extends from−∞ to+∞ (blue line), the curve
obtained from the linear wave equation (magenta line) and the asymptotic behavior given by the

ray theory (red line). In the last case, amplitude is proportional to
√

1
( 1
2a −y)

and diverges at the cusp.

The theoretical position of the cusp is indicated with the vertical green line

the initial amplitude A0 is set to 1. As can be seen, the diffraction theory (both for
finite and infinite integration domain) and the solution of the wave equation predict
that the maximum amplitude happens further than the Huygens’ cusp (on the right
of the theoretical cusp position on the figure) . Moreover, the diffraction theory for
a finite integration interval and the solution of the linear wave equation predict the
same result for the position and the value of the maximum amplitude. On the other
hand the Pearcey integral predicts the existence of oscillations of the envelope to
the right of the cusp, whereas the solution of wave equation exhibits a monotonic
decrease of the wave amplitude.

2 Experimental Setup

Experiments were carried out in a basin of size 120cm × 50cm × 15cm made in
plexiglass (see Fig. 3). The basin is filled with water up to a level of 10cm. In order
to produce the wave field the parabolic wave maker is connected to a mechanical
vibrator. In all cases a monochromatic wave is produced, with a frequency between
5 and 15Hz.

The shape of the free surface is determined with the method known as synthetic
Schlieren (Moisy et al. 2009). This procedure is based on the fact that a change in the
slope of the liquid-air interface causes a change in the direction of the light rays that
cross this surface. Then, if a pattern of dots is placed at the bottom of the liquid layer,
there is an apparent displacement of them when the free surface is deformed. The
synthetic Schlieren method works well when the slope of the liquid-gas interface is
small. In our case, the initial amplitude (at the edge of the parabolic wave maker)
is of the order of tens of microns whereas the maximum amplitudes attained during
focusing is about 150µm. Ifwe consider that the smallestwavelengthmeasured in the
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Fig. 3 The experiments of wave focusing were made in a plexiglass basin. The wave maker was
colocated approximately to 30cm away from the left border. Waves progresses from left to the right
as indicated by the arrow. Frequencies in the mechanical vibrator moving the wave maker lies in
the range 5–15Hz. In most experiments camera is at a distance of 1m from the free surface

experiments is 1.5 cm, the maximum value of the ratio of amplitude to wavelength
is 0.15/15 = 0.01. Consequently the slopes remain small and the validity of the
measurement method is guaranteed. Higher slopes could produce a failure of the
method because the crossing of the light rays when travel from the bottom to the free
surface.

The method uses a video camera to record the spatio-temporal evolution of the
surface elevation. In order to have a good resolution we used a high definition cam-
era, with an image size of 1,920 × 1,080 pixels. The area covered by a frame is
18.5cm × 10.4cm, so the conversion factor between pixels and length is 103.8
pixel / cm. To determine the wave features we printed in a paper sheet a pattern of
dots randomly distributed. This sheet is placed at the bottom of the basin. A snap-
shot of the dot pattern is taken when the free surface is at rest (hereafter called the
reference image). In a second step images of are taken when a surface wave passes.
Apparent displacement is measured with a PIV software. As usually done in Particle
Image Velocimetry the pictures are divided into a set of cells having a size of 32× 32
pixels. The number of cells in each direction is 128. In order to reconstruct the form
of the water-air interface we recall the relation between the apparent displacement
δr and the gradient of the free surface h (Moisy et al. 2009):

∇h = − δr
h∗ (11)

where 1
h∗ = 1

αh p
− 1

H . H is the distance from the camera to the bottom of the fluid

layer, h p is the thickness of the fluid and α = 1 − n′/n (n’ and n are the refraction
indices of the gas and liquid respectively). The reconstruction of the topography
of the free surface can be done by integration of Eq.11. The system of equation is
overdetermined and a least square routine is used to calculate h(x, y, t).
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Fig. 4 Dispersion relation for a plane wave (wavenumber versus frequency). The determination of
the wavelength was done with the method of periodograms. In the same figure the curve obtained
from Eq.12 has been also included. It can be observed a good agreement between the theory and
experiments, which is a test of the validity of the synthetic Schlieren method

3 Results

The dispersion relation for a surface wave in a liquid is given by the following
equation (Elmore and Heald 1969) :

ω2 =
(

gk + σk3

ρ

)
tanh(kh) (12)

where ω = 2πν is the pulsation of waves, k = 2π
λ

is the wavenumber, σ is the
surface tension coefficient of the liquid and ρ is the density of the fluid. The first
experiment wemade was the measurement of λ for different frequencies. To this end,
we have used a 30cm long plane wave maker. In order to have a precise estimate
of λ, we use the procedure based on periodograms. Figure4 shows the graph of the
wavenumber k versus frequency. For comparison we have included the prediction
given by Eq. 12. The agreement is very good implying that the synthetic Schlieren
method reproduces well the properties of waves in the system under study.

With regard to the process of focusing, measurements of the topography of the
free surface were made. The liquid-gas interface was excited with the parabolic
wave maker.. Measurements were carried out in a region between 15 < y < 45
and −8 < x < 8. The diffraction theory predicts that the maximum amplitude is
attained inside this region. Wave fronts-initially convergent- become divergent after
passing the origin of Huygens’ cusp. In Fig. 5 we present two graphs of the free
surface shape versus (x, y) for a wave of frequency f = 10Hz corresponding to a
wavelength λ = 2.32cm. To the right of each figure there is a scale which gives the
color to the value of the surface deformation h. Aswe can see in Fig. 5a (which covers
the interval 15 < y < 25) the focusing leads to an increase of the amplitude when
wave moves from left to the right. In Fig. 5b the topography of the free surface versus
the (x, y) coordinates, is plotted for the interval 25 < y < 35. In the same figure,
the Huygens’ cusp is also plotted as a dashed line. The figure exhibits the change
from a convergent (left side) to a divergent (right side) wave field. As expected, the
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Fig. 5 Topography of free surface h in the plane (x, y) of a wave produced by a parabolic wave
maker. Amplitude is proportional to the color intensity. Red stands for positive values and blue
stands for negative values. The vibrator was driven at a frequency of 10Hz, which corresponds to
a wavelength λ = 2.32cm. a free surface in the range 15 < y < 25. The focusing leads to an
increase in amplitude of the wave. b free surface in the range 25 < y < 35. The wave amplitude
reaches a maximum and then there is a decrease in amplitude and an inversion in the wavefront is
observed to the right

maximum amplitude is reached along the axis of symmetry after the wave traverses
the cusp. In Fig. 6 we present a snapshot of the wave field for 35 < y < 45. In
this region, the wave is divergent and consequently the amplitude decreases as the
wave travels. The amplitude of the wave does not exhibit oscillations in this region
as predicted by Eq, 10, because away from the cusp interference does not happen.

A most appropriate way to exhibit the focusing is by means of the envelope of
the wave along the axis of symmetry. The observed behavior is the combination
of nonlinearities and a finite size effect. For a linear wave, the diffraction theory
predicts that, when R

λ
approaches to infinity the maximum amplitude occurs at y =

28.6. Taking into account that R
λ
has a finite value, the maximum amplitude for a

wave of frequency ν = 10Hz should occur at y = 25.5 according to the linear wave
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Fig. 6 Topography of the free surface h in the plane (x, y) of a wave produced by a parabolic
wave maker (a=0.02cm−1). The vibrator was driven at a frequency of 10Hz, which corresponds
to a wavelength λ = 2.32cm. This figure clearly shows the decrease in amplitude as a function of

y away from cusp. The amplitude becomes proportional to
√

1
y− 1

2a
as predicted by the theory of

linear waves
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Fig. 7 Envelope of the wave along the axis of symmetry x = 0. The surface of the fluid is excited
with a frequency of 10Hz, which corresponds to a wavelength λ = 2.32cm. The positive and
negative branches of the envelope have a small asymmetry. This is a signature of the appearance of
nonlinearities. Otherwise, maximum amplitude is reached near the origin of cusp. For comparison,
the prediction of diffraction theory is also included (green line) and the solution of thewave equation
(black line). Amplitudes attained by the waves are greater than the prediction of the linear theory
of waves

theory In experiments we have found that position of maximum is dependent of the
initial amplitude A0 of the wave front. Figure7 shows the envelope of the wave on
the axis of symmetry for an initial amplitude of ≈ 20 µm . In the same figure the
curves of diffraction theory (green line) and the solution ofwave equation (black line)
are included. First, the positive and negative branches of the envelope have a small
asymmetry and in this sense non linearities are weak. On the other hand the position
of maximum is located to the left of black and red curves. Finally, the behavior of the
envelope to the right of the figure shows a more pronounced decrease with respect
to the predictions of the diffraction and the linear wave theories. For a greater value
of the initial amplitude A0 the experimental data show a shift of the position of the
maximun to the right. This behavior can be observed in Fig. 8, in which the envelope
is plotted for A0 ≈ 25 µm. Under these circumstances the maximum amplitude
is approximately that predicted by the linear theory. Concerning the behavior away
from the cusp, experimental data and models show a similar trend. And finally the
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Fig. 8 Envelope of the wave along the axis of symmetry. The surface of the fluid is excited with a
frequency of 10Hz, which corresponds to a wavelength λ = 2.32cm. The position of maximum is
shifted to the right with respect the previous figure, having a value close to the prediction by linear
theory. Otherwise, positive and negative branches of the envelope become clearly asymmetric,
which is a signature of the non linear effects. For comparison, the prediction of diffraction theory
(green line) and the solution of the wave equation (black line) are also included

positive and negative branches of the envelope become clearly different, indicating
that non linearities are relevant as expected for larger amplitude waves.

4 Conclusions

In this chapter we investigated the focusing of surface waves in water by the syn-
thetic Schlieren method. For this purpose the liquid-gas interface was excited with
a parabolic wave maker. Although the waves produced in experiments have small
amplitude the non linear effects are important in the vicinity of the Huygens’ cusp.
In this respect, we have observed that the growth of peaks is greater than that pre-
dicted by the linear theory. In the same sense the positive and negative branches of
the envelope become asymmetric as the initial amplitude grows. Another important
result is that away from the Huygens cusp the wave field becomes divergent and non
linearities stay weak in this region.

The experimental results presented here are the first step in the study of non
linear waves near a cusped caustic, which is at present an open subject. Some new
phenomena non present in linear waves will be investigated in the future. This is
for instance the case of wave breaking that can be induced by the focussing process
(Tejerina-Risso and Le Gal (2012)).
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